Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 31

Answer

$$\frac{{dy}}{{d\theta }} = \frac{{tan\left( {\ln \theta } \right)}}{\theta }$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\sec \left( {\ln \theta } \right)} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {\sec \left( {\ln \theta } \right)} \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sec \left( {\ln \theta } \right)}}\frac{d}{{d\theta }}\left[ {\sec \left( {\ln \theta } \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\sec u} \right] = \sec u\tan u\frac{{du}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sec \left( {\ln \theta } \right)}}\sec \left( {\ln \theta } \right)tan\left( {\ln \theta } \right)\frac{d}{{d\theta }}\left[ {\ln \theta } \right] \cr & {\text{solve the derivative}} \cr & \frac{{dy}}{{d\theta }} = tan\left( {\ln \theta } \right)\left( {\frac{1}{\theta }} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{d\theta }} = \frac{{tan\left( {\ln \theta } \right)}}{\theta } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.