Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 45

Answer

$$\frac{1}{{2\ln 2}}$$

Work Step by Step

$$\eqalign{ & \int_2^4 {\frac{{dx}}{{x{{\left( {\ln x} \right)}^2}}}} \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = \ln x,{\text{ so that }}du = \frac{1}{x}dx \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = 4,{\text{ }}u = \ln \left( 4 \right) \cr & \,\,\,\,\,\,{\text{If }}x = 2,{\text{ }}u = \ln \left( 2 \right) \cr & {\text{write the integral in terms of }}u \cr & \int_2^4 {\frac{{dx}}{{x{{\left( {\ln x} \right)}^2}}}} = \int_{\ln 2}^{\ln 4} {\frac{1}{{{u^2}}}du} \cr & = \int_{\ln 2}^{\ln 4} {{u^{ - 2}}du} \cr & {\text{integrate by using the power rule }}\int {{u^n}} du = \frac{{{u^{n + 1}}}}{{n + 1}} + C \cr & = \left( {\frac{{{u^{ - 1}}}}{{ - 1}}} \right)_{\ln 2}^{\ln 4} \cr & = \left( {\frac{1}{u}} \right)_{\ln 4}^{\ln 2} \cr & {\text{use fundamental theorem of calculus: }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{1}{{\ln 2}} - \frac{1}{{\ln 4}} \cr & {\text{simplifying}} \cr & = \frac{1}{{\ln 2}} - \frac{1}{{\ln {2^2}}} \cr & = \frac{1}{{\ln 2}} - \frac{1}{{2\ln 2}} \cr & = \frac{1}{{2\ln 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.