Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 26

Answer

$$\frac{{dy}}{{d\theta }} = \sec \theta $$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\sec \theta + \tan \theta } \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {\sec \theta + \tan \theta } \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sec \theta + \tan \theta }}\frac{d}{{d\theta }}\left[ {\sec \theta + \tan \theta } \right] \cr & {\text{solve the derivatives}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sec \theta + \tan \theta }}\left( {\sec \theta tan\theta + se{c^2}\theta } \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{d\theta }} = \frac{{\sec \theta tan\theta + se{c^2}\theta }}{{\sec \theta + \tan \theta }} \cr & \frac{{dy}}{{d\theta }} = \frac{{\sec \theta \left( {tan\theta + sec\theta } \right)}}{{\sec \theta + \tan \theta }} \cr & \frac{{dy}}{{d\theta }} = \sec \theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.