Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 8

Answer

$$\frac{3}{{2t}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {{t^{3/2}}} \right) \cr & {\text{use the logarithmic property }}\ln {a^n} = n\ln a \cr & y = \frac{3}{2}\ln t \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {\frac{3}{2}\ln t} \right] \cr & \frac{{dy}}{{dt}} = \frac{3}{2}\frac{d}{{dt}}\left[ {\ln t} \right] \cr & {\text{use the formula }}\frac{d}{{dt}}\ln u = \frac{1}{u}\frac{{du}}{{dt}}{\text{, }}u > 0\cr & {\text{ where }}u{\text{ is any differentiable function of }}t \cr & \frac{{dy}}{{dt}} = \frac{3}{2}\left( {\frac{1}{t}} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{dt}} = \frac{3}{{2t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.