Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 41

Answer

$$\ln 3$$

Work Step by Step

$$\eqalign{ & \int_0^\pi {\frac{{\sin t}}{{2 - \cos t}}} dt \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = 2 - \cos t,{\text{ so that }}du = \sin tdt \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}t = \pi,{\text{ }}u = 2 - \cos \left( \pi \right) = 3 \cr & \,\,\,\,\,\,{\text{If }}t = 0,{\text{ }}u = 2 - \cos \left( 0 \right) = 1 \cr & {\text{write the integral in terms of }}u \cr & \int_0^\pi {\frac{{\sin t}}{{2 - \cos t}}} dt = \int_1^3 {\frac{{du}}{u}} \cr & {\text{integrate}} \cr & = \left( {\ln \left| u \right|} \right)_1^3 \cr & {\text{use the fundamental theorem of calculus: }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \ln \left| 3 \right| - \ln \left| 1 \right| \cr & {\text{simplifying}} \cr & = \ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.