Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 37

Answer

$$\ln \left( {\frac{2}{3}} \right)$$

Work Step by Step

$$\eqalign{ & \int_{ - 3}^{ - 2} {\frac{{dx}}{x}} \cr & {\text{integrate using the rule }}\int {\frac{1}{x}} dx = \ln \left| x \right| + C{\text{; then}}{\text{,}} \cr & \int_{ - 3}^{ - 2} {\frac{{dx}}{x}} = \left( {\ln \left| x \right|} \right)_{ - 3}^{ - 2} \cr & {\text{use the fundamental theorem of calculus }} \cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\left( {{\text{see page 281}}} \right) \cr & {\text{then}}{\text{,}} \cr & = \ln \left| { - 2} \right| - \ln \left| { - 3} \right| \cr & {\text{simplifying}} \cr & = \ln 2 - \ln 3 \cr & {\text{use the quotient property for logarithms}} \cr & = \ln \left( {\frac{2}{3}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.