Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 19

Answer

$$\frac{1}{{{t^2}}}\left( {1 - \ln t} \right)$$

Work Step by Step

$$\eqalign{ & y = \frac{{\ln t}}{t} \cr & {\text{use }}\frac{1}{t} = {t^{ - 1}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & y = {t^{ - 1}}\ln t \cr & {\text{use the product rule for derivatives}} \cr & \frac{{dy}}{{dt}} = {t^{ - 1}}\frac{d}{{dt}}\left[ {\ln t} \right] + \ln t\frac{d}{{dt}}\left[ {{t^{ - 1}}} \right] \cr & {\text{solve the derivatives}} \cr & \frac{{dy}}{{dt}} = {t^{ - 1}}\left( {\frac{1}{t}} \right) + \ln t\left( { - {t^{ - 2}}} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{dt}} = {t^{ - 2}} - {t^{ - 2}}\ln t \cr & \frac{{dy}}{{dt}} = {t^{ - 2}}\left( {1 - \ln t} \right) \cr & \frac{{dy}}{{dt}} = \frac{1}{{{t^2}}}\left( {1 - \ln t} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.