Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 16

Answer

$$\frac{1}{{2\sqrt {\ln t} }} + \sqrt {\ln t} $$

Work Step by Step

$$\eqalign{ & y = t\sqrt {\ln t} \cr & {\text{rewrite the function}} \cr & y = t{\left( {\ln t} \right)^{1/2}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {t{{\left( {\ln t} \right)}^{1/2}}} \right] \cr & {\text{use the producr rule for derivatives}} \cr & \frac{{dy}}{{dt}} = t\frac{d}{{dt}}\left[ {{{\left( {\ln t} \right)}^{1/2}}} \right] + {\left( {\ln t} \right)^{1/2}}\frac{d}{{dt}}\left[ t \right] \cr & {\text{use the chain rule for }}\frac{d}{{dt}}\left[ {{{\left( {\ln t} \right)}^{1/2}}} \right] \cr & \frac{{dy}}{{dt}} = t\left[ {\frac{1}{2}{{\left( {\ln t} \right)}^{ - 1/2}}} \right]\frac{d}{{dt}}\left[ {\ln t} \right] + {\left( {\ln t} \right)^{1/2}}\frac{d}{{dt}}\left[ t \right] \cr & {\text{solve the derivatives}} \cr & \frac{{dy}}{{dt}} = t\left[ {\frac{1}{2}{{\left( {\ln t} \right)}^{ - 1/2}}} \right]\left( {\frac{1}{t}} \right) + {\left( {\ln t} \right)^{1/2}}\left( 1 \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = \frac{1}{2}{\left( {\ln t} \right)^{ - 1/2}} + {\left( {\ln t} \right)^{1/2}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{2\sqrt {\ln t} }} + \sqrt {\ln t} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.