Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 32

Answer

$$\frac{{dy}}{{d\theta }} = \frac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{2\sin \theta \cos \theta }} - \frac{2}{{\theta \left( {1 + 2\ln \theta } \right)}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\frac{{\sqrt {\sin \theta \cos \theta } }}{{1 + 2\ln \theta }}} \right) \cr & {\text{use the quotient property for logarithms}} \cr & y = \ln \left( {\sqrt {\sin \theta \cos \theta } } \right) - \ln \left( {1 + 2\ln \theta } \right) \cr & {\text{rewrite the radical}} \cr & y = \ln {\left( {\sin \theta \cos \theta } \right)^{1/2}} - \ln \left( {1 + 2\ln \theta } \right) \cr & {\text{use the property for logarithms}} \cr & y = \frac{1}{2}\ln \left( {\sin \theta \cos \theta } \right) - \ln \left( {1 + 2\ln \theta } \right) \cr & {\text{find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{1}{2}\frac{d}{{d\theta }}\left[ {\ln \left( {\sin \theta \cos \theta } \right)} \right] - \frac{d}{{d\theta }}\left[ {\ln \left( {1 + 2\ln \theta } \right)} \right] \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sin \theta \cos \theta }}\frac{d}{{d\theta }}\left[ {\sin \theta \cos \theta } \right] - \frac{d}{{d\theta }}\left[ {\ln \left( {1 + 2\ln \theta } \right)} \right] \cr & {\text{use the product rule for }}\frac{d}{{d\theta }}\left[ {\ln \left( {\sin \theta \cos \theta } \right)} \right] \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sin \theta \cos \theta }}\left( {\sin \theta \frac{d}{{d\theta }}\left[ {\cos \theta } \right] + \cos \theta \frac{d}{{d\theta }}\left[ {\sin \theta } \right]} \right) - \frac{d}{{d\theta }}\left[ {\ln \left( {1 + 2\ln \theta } \right)} \right] \cr & {\text{solve the derivatives}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sin \theta \cos \theta }}\left( { - {{\sin }^2}\theta + {{\cos }^2}\theta } \right) - \frac{1}{{1 + 2\ln \theta }}\left( {\frac{2}{\theta }} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{d\theta }} = \frac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{2\sin \theta \cos \theta }} - \frac{2}{{\theta \left( {1 + 2\ln \theta } \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.