Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 63

Answer

$$\frac{{dy}}{{d\theta }} = \frac{{\theta + 5}}{{\theta \cos \theta }}\left( {\frac{1}{{\theta + 5}} - \frac{1}{\theta } + \frac{{\sin \theta }}{{\cos \theta }}} \right)$$

Work Step by Step

$$\eqalign{ & y = \frac{{\theta + 5}}{{\theta \cos \theta }} \cr & {\text{Take the natural logarithm of both sides:}} \cr & {\text{Use the properties of logarithms}} \cr & \ln y = \ln \left( {\frac{{\theta + 5}}{{\theta \cos \theta }}} \right) \cr & {\text{quotient rule:}} \cr & \ln y = \ln \left( {\theta + 5} \right) - \ln \left( {\theta \cos \theta } \right) \cr & {\text{product rule:}} \cr & \ln y = \ln \left( {\theta + 5} \right) - \ln \left( \theta \right) - \ln \left( {\cos \theta } \right) \cr & {\text{Take derivatives of both sides with respect to }}\theta \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left( {\ln \left( {\theta + 5} \right)} \right) - \frac{d}{{d\theta }}\left( {\ln \left( \theta \right)} \right) - \frac{d}{{d\theta }}\left( {\ln \left( {\cos \theta } \right)} \right) \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{1}{{\theta + 5}} - \frac{1}{\theta } - \frac{{ - \sin \theta }}{{\cos \theta }} \cr & \frac{1}{y}\frac{{dy}}{{d\theta }} = \frac{1}{{\theta + 5}} - \frac{1}{\theta } + \frac{{\sin \theta }}{{\cos \theta }} \cr & {\text{solve for }}\frac{{dy}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = y\left( {\frac{1}{{\theta + 5}} - \frac{1}{\theta } + \frac{{\sin \theta }}{{\cos \theta }}} \right) \cr & {\text{substitute }}\frac{{\theta + 5}}{{\theta \cos \theta }}\sin \theta {\text{ for }}y{\text{ }} \cr & \frac{{dy}}{{d\theta }} = \frac{{\theta + 5}}{{\theta \cos \theta }}\left( {\frac{1}{{\theta + 5}} - \frac{1}{\theta } + \frac{{\sin \theta }}{{\cos \theta }}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.