Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.2 - Natural Logarithms - Exercises 7.2 - Page 381: 39

Answer

$$\ln \left| {{y^2} - 25} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{2ydy}}{{{y^2} - 25}}} \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = {y^2} - 25,{\text{ so that }}du = 2ydy \cr & {\text{write the integral in terms of }}u \cr & \int {\frac{{2ydy}}{{{y^2} - 25}}} = \int {\frac{{du}}{u}} \cr & {\text{integrate }} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}y{\text{; replace }}{y^2} - 25{\text{ for }}u \cr & = \ln \left| {{y^2} - 25} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.