Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 56

Answer

$$\int \frac{1-\sec t}{\cos t-1} d t =\sin t-2t+\ln |\sec t+\tan t|+c$$

Work Step by Step

$$ \int \frac{1-\sec t}{\cos t-1} d t $$ Since \begin{align*} \int \frac{1-\sec t}{\cos t-1} d t&=\int \frac{1-\frac{1}{\cos t}}{\cos t-1} d t\\ &=\int \frac{\frac{\cos t-1}{\cos t}}{\cos t-1} d t\\ &=\int \frac{(\cos t-1)^2}{\cos t} d t\\ &=\int \frac{\cos^2 t-2\cos t+1}{\cos t} d t\\ &=\int (\cos t-2+\sec t)dt\\ &=\sin t-2t+\ln |\sec t+\tan t|+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.