Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 49

Answer

$$\int \csc ^{4} 3 x d x =\frac{-1}{3}\cot3x -\frac{1}{9}\cot^33x$$

Work Step by Step

$$ \int \csc ^{4} 3 x d x $$ Let $u=3x\ \ \to\ \ du=3dx$, then \begin{align*} \int \csc ^{4} 3 x d x&=\frac{1}{3}\int \csc ^{4} u d u\\ &=\frac{1}{3}\int \csc ^{2} u \csc ^{2} ud u\\ &=\frac{1}{3}\int(1+ \cot ^{2} u) \csc ^{2} ud u\\ &=\frac{1}{3}\int(\csc ^{2} u+ \cot ^{2} u\csc ^{2} u) d u\\ &=\frac{1}{3}\left( -\cot u -\frac{1}{3}\cot^3u\right)+c\\ &=\frac{-1}{3}\cot3x -\frac{1}{9}\cot^33x \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.