Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 7

Answer

$\frac{(cos 2θ)^{\frac{3}{2}}(-7+3(cos 2θ)^{2})}{21}+C$

Work Step by Step

$\int (sin θ)^3 \sqrt{cos 2θ }dθ$ $let 2θ=u$ $2dθ=du$ $dθ=\frac{1}{2}du$ $\int (sin θ)^3 \sqrt{cos 2θ }$ $=\frac{1}{2} \int (cos u)^{\frac{1}{2}}(sin u)^3 du$ $//(sin u)^2= 1-(cos u)^2$ $=\frac{1}{2} \int ((cosu)^{\frac{1}{2}}-(cos u)^{frac{5}{2}}sin u$ $ du$ $=\frac{1}{2} \int sin u(cosu)^{\frac{1}{2}}du$ $-\frac{1}{2} \int (sinu)(cosu)^{\frac{5}{2}}$ $du$ $let cosu=p$ $-sinu$ $du=dp$ $=-\frac{1}{2} \int p^{\frac{1}{2}}dp +\frac{1}{2} \int p^{\frac{5}{2}}dp$ $=-\frac{p^{\frac{3}{2}}}{3}+\frac{p^{\frac{7}{2}}}{7}+C$ $=\frac{-7(cosu)^{\frac{3}{2}}+3(cosu)^{\frac{7}{2}}}{21}+C$ $=\frac{(cosu)^{\frac{3}{2}}(-7+3(cosu)^{2})}{21}+C$ $=\frac{(cos 2θ)^{\frac{3}{2}}(-7+3(cos 2θ)^{2})}{21}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.