Answer
$$\int_{-\pi}^{\pi} \sin ^{2} x d x =\pi $$
Work Step by Step
$$
\int_{-\pi}^{\pi} \sin ^{2} x d x
$$
Since $$\sin^2x= \frac{1}{2}(1-\cos 2x)$$
Then
\begin{align*}
\int_{-\pi}^{\pi} \sin ^{2} x d x&=\frac{1}{2}\int_{-\pi}^{\pi} (1-\cos2 x) d x\\
&=\frac{1}{2}\left(x-\frac{1}{2}\sin 2x\right)\bigg|_{-\pi}^{\pi}\\
&=\frac{1}{2} (\pi -(-\pi ))\\
&=\pi
\end{align*}