Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 34

Answer

$$s =\frac{1}{8} \left (\alpha -\frac{1}{2\alpha}\sin 2\alpha\right) +c$$

Work Step by Step

$$ \frac{d s}{d \alpha}=\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2} $$ Since $\sin2 \alpha=2\sin\alpha\cos \alpha$, then \begin{align*} ds&= \sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2}d\alpha\\ s&= \int \left(\sin \frac{\alpha}{2} \cos \frac{\alpha}{2}\right)^2d\alpha\\ &=\frac{1}{4} \int \sin^2\alpha d\alpha\\ &=\frac{1}{8} \int (1-\cos 2\alpha) d\alpha\\ &=\frac{1}{8} \left (\alpha -\frac{1}{2\alpha}\sin 2\alpha\right) +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.