Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 35

Answer

$$y = \frac{1}{9}{\sec ^3}3x - \frac{1}{3}\sec 3x + C$$

Work Step by Step

$$\eqalign{ & y' = {\tan ^3}3x\sec 3x \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = {\tan ^3}3x\sec 3x \cr & {\text{Separate the variables}} \cr & dy = {\tan ^3}3x\sec 3xdx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {{{\tan }^3}3x\sec 3xdx} \cr & y = \int {{{\tan }^2}3x\tan 3x\sec 3xdx} \cr & {\text{Use the identity }}{\sec ^2}\theta = 1 + {\tan ^2}\theta \cr & y = \int {\left( {{{\sec }^2}3x - 1} \right)\tan 3x\sec 3xdx} \cr & y = \frac{1}{3}\int {\left( {{{\sec }^2}3x} \right)\tan 3x\sec 3x\left( 3 \right)dx} - \frac{1}{3}\int {\tan 3x\sec 3x\left( 3 \right)dx} \cr & {\text{Integrating}} \cr & y = \frac{1}{3}\left( {\frac{{{{\sec }^3}3x}}{3}} \right) - \frac{1}{3}\sec 3x + C \cr & y = \frac{1}{9}{\sec ^3}3x - \frac{1}{3}\sec 3x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.