Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 40

Answer

$$y = {\left( {\frac{3}{2}\tan x - \frac{3}{2}x + \sqrt 3 } \right)^2}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = 3\sqrt y {\tan ^2}x,{\text{ }}\left( {0,3} \right) \cr & {\text{Separate the variables}} \cr & {y^{ - 1/2}}dy = 3{\tan ^2}xdx \cr & {\text{Integrate both sides}} \cr & \int {{y^{ - 1/2}}} dy = 3\int {\left( {{{\sec }^2}x - 1} \right)} dx \cr & 2\sqrt y = 3\tan x - 3x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0,3} \right) \cr & 2\sqrt 3 = 3\tan \left( 0 \right) - 3\left( 0 \right) + C \cr & C = 2\sqrt 3 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & 2\sqrt y = 3\tan x - 3x + 2\sqrt 3 \cr & \sqrt y = \frac{3}{2}\tan x - \frac{3}{2}x + \sqrt 3 \cr & y = {\left( {\frac{3}{2}\tan x - \frac{3}{2}x + \sqrt 3 } \right)^2} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.