Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 44

Answer

$$\int \sin (-7 x) \cos 6 x d x = \frac{1}{26}\cos (13 x)+\frac{1}{2} \cos (x) +c$$

Work Step by Step

$$ \int \sin (-7 x) \cos 6 x d x $$ Since $$ \sin m x \cos n x=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) $$ Then \begin{align*} \int \sin (-7 x) \cos 6 x d x&=\frac{1}{2}\int\left( \sin (-13 x)+ \sin (-x)\right) d x\\ &=\frac{1}{2}\int\left(-\sin (13 x)- \sin (x)\right) d x\\ &=\frac{1}{2}\left(\frac{1}{13}\cos (13 x)+ \cos (x)\right)+c\\ &= \frac{1}{26}\cos (13 x)+\frac{1}{2} \cos (x) +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.