Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 33

Answer

$$r =\frac{1}{4}\left(\frac{3\theta}{2}-\frac{1}{\pi}\sin 2\pi \theta+\frac{1}{8\pi}\sin 4\pi \theta\right) +c$$

Work Step by Step

$$ \frac{d r}{d \theta}=\sin ^{4} \pi \theta $$ Since $$\sin^2x=\frac{1}{2}(1-\cos 2x) ,\ \ \ \cos^2x=\frac{1}{2}(1+\cos 2x)$$ Then \begin{align*} dr&= \sin ^{4} \pi \theta d\theta \\ r&=\int \sin ^{4} \pi \theta d\theta\\ &=\frac{1}{4}\int(1-\cos 2\pi \theta) ^2d\theta\\ &=\frac{1}{4}\int(1-2\cos 2\pi \theta+\cos^2 2\pi \theta) d\theta\\ &=\frac{1}{4}\int\left(1-2\cos 2\pi \theta+\frac{1}{2}+\frac{1}{2}\cos 4\pi \theta\right) d\theta\\ &=\frac{1}{4}\int\left(\frac{3}{2}-2\cos 2\pi \theta+\frac{1}{2}\cos 4\pi \theta\right)d\theta\\ &=\frac{1}{4}\left(\frac{3\theta}{2}-\frac{1}{\pi}\sin 2\pi \theta+\frac{1}{8\pi}\sin 4\pi \theta\right) +c\\ \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.