Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 10

Answer

$$\int \sin ^{4} 6 \theta d \theta= \frac{1}{4} \left (\frac{3}{2}\theta-\frac{1}{6}\sin12\theta +\frac{1}{48}\sin24\theta\right)+c$$

Work Step by Step

$$ \int \sin ^{4} 6 \theta d \theta $$ Since \begin{align*} \sin^2x&=\frac{1}{2}(1-\cos2x)\\ \cos^2x&=\frac{1}{2}(1+\cos2x) \end{align*} Then \begin{align*} \int \sin ^{4} 6 \theta d \theta&= \frac{1}{4}\int (1-\cos12\theta)^2d\theta\\ &= \frac{1}{4}\int (1-2\cos12\theta+\cos^212\theta)d\theta\\ &= \frac{1}{4}\int\left (1-2\cos12\theta+\frac{1}{2}+\frac{1}{2}\cos24\theta\right)d\theta\\ &= \frac{1}{4}\int\left (\frac{3}{2}-2\cos12\theta +\frac{1}{2}\cos24\theta\right)d\theta\\ &= \frac{1}{4} \left (\frac{3}{2}\theta-\frac{1}{6}\sin12\theta +\frac{1}{48}\sin24\theta\right)+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.