Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 43

Answer

$$\int \sin 2 x \cos 4 x d x =\frac{1}{4}\cos 2x -\frac{1}{12}\cos 6x+c$$

Work Step by Step

$$ \int \sin 2 x \cos 4 x d x $$ Since $$ \sin m x \cos n x=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) $$ Then \begin{align*} \int \sin 2 x \cos 4 x d x&=\frac{1}{2}\int (\sin (-2x)+\sin (6x))dx\\ &=\frac{1}{2}\int (-\sin (2x)+\sin (6x))dx\\ &=\frac{1}{2}\left( \frac{1}{2}\cos 2x -\frac{1}{6}\cos 6x\right) +c\\ &=\frac{1}{4}\cos 2x -\frac{1}{12}\cos 6x+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.