Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 53

Answer

$$\int \frac{1}{\sec x \tan x} d x =\ln |\csc t+ \cot t| +\cos x+c$$

Work Step by Step

$$ \int \frac{1}{\sec x \tan x} d x $$ Since \begin{align*} \int \frac{1}{\sec x \tan x} d x&=\int \frac{1}{\frac{1}{\cos x} \frac{\sin x}{\cos x} } d x\\ &=\int \frac{\cos^2x}{ \sin x } d x\\ &=\int \frac{1-\sin^2x}{ \sin x } d x\\ &=\int (\csc x- \sin x)dx\\ &=\ln |\csc t+ \cot t| +\cos x+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.