Answer
$$\int \frac{1}{\sec x \tan x} d x =\ln |\csc t+ \cot t| +\cos x+c$$
Work Step by Step
$$
\int \frac{1}{\sec x \tan x} d x
$$
Since
\begin{align*}
\int \frac{1}{\sec x \tan x} d x&=\int \frac{1}{\frac{1}{\cos x} \frac{\sin x}{\cos x} } d x\\
&=\int \frac{\cos^2x}{ \sin x } d x\\
&=\int \frac{1-\sin^2x}{ \sin x } d x\\
&=\int (\csc x- \sin x)dx\\
&=\ln |\csc t+ \cot t| +\cos x+c
\end{align*}