Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 38

Answer

$$y = \frac{1}{3}{\tan ^3}x - \frac{1}{4}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = {\sec ^2}x{\tan ^2}x,{\text{ }}\left( {0, - \frac{1}{4}} \right) \cr & {\text{Separate the variables}} \cr & dy = {\sec ^2}x{\tan ^2}x \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {{{\tan }^2}x{{\sec }^2}x} dx \cr & y = \frac{1}{3}{\tan ^3}x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0, - \frac{1}{4}} \right) \cr & - \frac{1}{4} = \frac{1}{3}{\tan ^3}\left( 0 \right) + C \cr & C = - \frac{1}{4} \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{1}{3}{\tan ^3}x - \frac{1}{4} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.