Answer
$$\int \cot ^{3} 2 x d x =\frac{-1}{4}\csc 2x -\frac{1}{2}\ln |\sin 2x|+c$$
Work Step by Step
$$
\int \cot ^{3} 2 x d x
$$
Since
$$1+\cot^2x=\csc^2x$$
Then
\begin{align*}
\int \cot ^{3} 2 x d x&=\int\cot (2x) (\csc ^{2} 2 x-1) d x\\
&=\int[\cot (2x) \csc ^{2} (2 x)-\cot (2x)] d x\\
&=\frac{-1}{4}\csc 2x -\frac{1}{2}\ln |\sin 2x|+c
\end{align*}