Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 46

Answer

$$\int \sin 5 x \sin 4 x d x =\frac{1}{2} \sin x-\frac{1}{18} \sin (9x)+c$$

Work Step by Step

$$ \int \sin 5 x \sin 4 x d x $$ Since $$ \sin m x \sin n x=\frac{1}{2}(\cos [(m-n) x]-\cos [(m+n) x]) $$ Then \begin{align*} \int \sin 5 x \sin 4 x d x&=\frac{1}{2}\int \cos (x)- \cos (9 x) d x\\ &=\frac{1}{2} \sin x-\frac{1}{18} \sin (9x)+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.