Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 39

Answer

$$\frac{1}{2}{y^2} = - 3\cos x + 5$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{3\sin x}}{y},{\text{ }}\left( {0,2} \right) \cr & {\text{Separate the variables}} \cr & ydy = 3\sin xdx \cr & {\text{Integrate both sides}} \cr & \int y dy = 3\int {\sin x} dx \cr & \frac{1}{2}{y^2} = - 3\cos x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0,2} \right) \cr & \frac{1}{2}{\left( 2 \right)^2} = - 3\cos \left( 0 \right) + C \cr & 2 = - 3 + C \cr & C = 5 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & \frac{1}{2}{y^2} = - 3\cos x + 5 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.