Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 22

Answer

$\frac{tan^53x}{15}- \frac{tan^33x}{9} + \frac{tan3x}{3}- x+C$

Work Step by Step

Find the indefinite integral $\int tan^6(3x)dx$ Rewrite the integrand to simplify things, Let 3x=x $\frac{1}{3} \int tan^6xdx$ Use Guideline #3 $\frac{1}{3} \int tan^6xdx = \frac{1}{3}\int tan^4x(sec^2x -1)dx$ $\frac{1}{3}[\int tan^4x sec^2x dx - \int tan^4xdx]$ $\frac{1}{3}[\int tan^4xsec^2xdx - \int tan^2x(sec^2x -1) dx]$ Let $u=tanx$ then $du=sec^2xdx$ $\frac{1}{3}[ \int u^4du - \int u^2du + \int tan^2xdx]$ $\frac{1}{3}[\int(u^4 - u^2)du + \int(sec^2x -1)dx]$ $\frac{1}{3}[\frac{u^5}{5}- \frac{u^3}{3}] + \frac{1}{3}[tanx - x] +C$ $\frac{tan^5x}{15}- \frac{tan^3x}{9} + \frac{tanx}{3}- \frac{x}{3}+C$ Resubstitute $x=3x$ $\frac{tan^53x}{15}- \frac{tan^33x}{9} + \frac{tan3x}{3}- x+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.