Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 55

Answer

$$t-2\tan t+c$$

Work Step by Step

Given $$\int\left(\tan ^{4} t-\sec ^{4} t\right) d t$$ Since \begin{aligned} \int\left(\tan ^{4} t-\sec ^{4} t\right) d t&=\int\left(\tan ^{2} t\tan ^{2} t-\sec ^{2} t\sec ^{2} t\right) d t\\ &= \int\left(\tan ^{2} t(\sec ^{2} t-1) -\sec ^{2} t(1+\tan ^{2} t) \right) d t\\ &= \int\left(\tan ^{2} t\sec ^{2} t-\tan^2 t -\sec ^{2} t-\sec ^{2} t\tan ^{2} t \right) d t\\ &= \int\left(\tan ^{2} t\sec ^{2} t-\sec ^{2}+1 -\sec ^{2} t-\sec ^{2} t\tan ^{2} t \right) d t\\ &= \int\left( 1-2\sec ^{2}t \right) d t\\ &=t-2\tan t+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.