Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 11

Answer

$$\int x \sin ^{2} x d x =\frac{1}{4}x^2-\frac{1}{4}\left(x\sin2x+\frac{1}{2}\cos2x \right)+c$$

Work Step by Step

$$ \int x \sin ^{2} x d x $$ Since $$\sin^2x= \frac{1}{2}(1-\cos2x)$$ Then \begin{align*} \int x \sin ^{2} x d x&= \frac{1}{2}\int x(1-\cos2x)dx\\ &= \frac{1}{2}\int xdx-\frac{1}{2}\int x\cos2xdx\\ &=I_1-I_2 \end{align*} where $$I_1=\frac{1}{2}\int xdx=\frac{1}{4}x^2+c$$ and $$\frac{1}{2}\int x\cos2xdx$$ Integrate by parts , let \begin{align*} u&=x\ \ \ \ \ \ \ dv=\cos2xdx\\ du&=dx\ \ \ \ \ \ \ v=\frac{1}{2}\sin2x \end{align*} then \begin{align*} I_2&=\frac{1}{2}\left(uv-\int vdu\right)\\ &=\frac{1}{2}\left(\frac{1}{2}x\sin2x-\frac{1}{2}\int \sin2xdx\right)\\ &=\frac{1}{4}\left(x\sin2x+\frac{1}{2}\cos2x \right)\\ \end{align*} Hence \begin{align*} \int x \sin ^{2} x d x&=I_1-I_2\\ &=\frac{1}{4}x^2-\frac{1}{4}\left(x\sin2x+\frac{1}{2}\cos2x \right)+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.