Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 45

Answer

$$\int \sin \theta \sin 3 \theta d \theta =\frac{1}{4}\sin(2\theta)-\frac{1}{8}\sin (4\theta )+c$$

Work Step by Step

$$ \int \sin \theta \sin 3 \theta d \theta $$ Since $$ \sin m x \sin n x=\frac{1}{2}(\cos [(m-n) x]-\cos [(m+n) x]) $$ Then \begin{align*} \int \sin \theta \sin 3 \theta d \theta&=\frac{1}{2}\int \left( \cos(-2\theta)-\cos (4\theta )\right)d\theta \\ &=\frac{1}{2}\int \left( \cos(2\theta)-\cos (4\theta )\right)d\theta\\ &=\frac{1}{2} \left( \frac{1}{2}\sin(2\theta)-\frac{1}{4}\sin (4\theta )\right)+c\\ &=\frac{1}{4}\sin(2\theta)-\frac{1}{8}\sin (4\theta )+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.