Answer
$\frac{sin 4x}{8}+\frac{sin 8x}{16}+C$
Work Step by Step
Using product-to-sum Identity, we get
$\int cos 2x cos 6x dx= \int\frac{1}{2}(cos (-4x)+cos( 8x))dx$
$= \frac{1}{2}\int cos 4x dx + \frac{1}{2}\int cos 8xdx$
$= \frac{1}{2}\times\frac{sin 4x}{4} +\frac{1}{2}\times\frac{sin 8x}{8}+C$
$= \frac{sin 4x}{8}+\frac{sin 8x}{16}+C$