Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 37

Answer

$$y = \frac{1}{2}x - \frac{1}{4}\sin 2x$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = {\sin ^2}x,{\text{ }}\left( {0,0} \right) \cr & {\text{Separate the variables}} \cr & dy = {\sin ^2}xdx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {{{\sin }^2}x} dx \cr & y = \int {\frac{{1 - \cos 2x}}{2}} dx \cr & y = \int {\left( {\frac{1}{2} - \frac{{\cos 2x\left( 2 \right)}}{4}} \right)} dx \cr & y = \frac{1}{2}x - \frac{1}{4}\sin 2x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0,0} \right) \cr & 0 = \frac{1}{2}\left( 0 \right) - \frac{1}{4}\sin 2\left( 0 \right) + C \cr & C = 0 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{1}{2}x - \frac{1}{4}\sin 2x \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.