Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 12

Answer

$-\frac{4x^3-3sin(2x)(2x^2-1)-6xcos(2x)}{24}+C$

Work Step by Step

$\int x^2 (sinx)^2dx= \int x^2 (\frac{1-cos(2x))}{2x}dx $ $=\frac{1}{2} \int x^2dx$ $-\frac{1}{2}\int x^2 cos(2x)dx$ for $\int x^2 cos(2x)dx$, $let u=x^2$ $du=2xdx$ $dv=cos(2x)dx$ $v=\frac{1}{2}sin(2x)$ apply integration by parts $\int udv=uv-\int vdu$ $=\frac{x^2 (sin2x)}{2}- \int \frac{1}{2}sin(2x)2xdx$ $=\frac{x^2 (sin2x)}{2}- \int x sin(2x)dx$ for $\int x sin(2x)dx,$ $let u=x$ $du=dx$ $dv=sin(2x)dx$ $v=-\frac{cos(2x)}{2}$ apply integration by parts $\int udv=uv-\int vdu$ $=-\frac{xcos(2x)}{2}- \int -\frac{1}{2} cos(2x)dx$ $=-\frac{xcos(2x)}{2}+\frac{1}{2} \int cos(2x)dx$ $=-\frac{xcos(2x)}{2}+\frac{sin(2x)}{4}$ ---- $for \frac{1}{2} \int x^2dx,$ $\frac{1}{2} \int x^2dx= \frac{x^3}{6}$ ------ $\frac{1}{2} \int x^2dx$ $-\frac{1}{2}\int x^2 cos(2x)dx$ $=\frac{x^3}{6}-\frac{1}{2}(\frac{sin(2x)(2x^2-1)+2xcos(2x)}{4})+C$ $=-\frac{4x^3-3sin(2x)(2x^2-1)-6xcos(2x)}{24}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.