Answer
$$\int \frac{\cot ^{2} t}{\csc t} d t =\ln \left|\csc t+\cot t\right|+\cos \left(t\right)+C$$
Work Step by Step
$$
\int \frac{\cot ^{2} t}{\csc t} d t
$$
Since
\begin{align*}
\int \frac{\cot ^{2} t}{\csc t} d t&= \int \frac{\csc ^{2} t-1}{\csc t} d t\\
&=\int (\csc t-\sin t)dt\\
&=\ln \left|\csc t+\cot t\right|+\cos \left(t\right)+C
\end{align*}