Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 18

Answer

$\dfrac {35\pi }{256}\approx 0.43$

Work Step by Step

If $n$ is even $$\Rightarrow \int ^{\pi /2}_{0}\cos ^{n}xdx=\left( \dfrac {1}{2}\right) \left( \dfrac {3}{4}\right) \left( \dfrac {5}{6}\right) \ldots \left( \dfrac {n-1}{n}\right) \left( \dfrac {\pi }{2}\right) $$ $$\Rightarrow \int ^{\pi /2}_{0}\cos ^{8}xdx=\left( \dfrac {1}{2}\right) \left( \dfrac {3}{4}\right) \left( \dfrac {5}{6}\right) \left( \dfrac {7}{8}\right) \left( \dfrac {\pi }{2}\right) =\dfrac {35\pi }{256}\approx 0.43$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.