Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 42

Answer

$\frac{sin 2\theta}{4}+ \frac{sin 8\theta}{16}+C$

Work Step by Step

Recall the product-to-sum identity: $cos mx cos nx = \frac{1}{2}(cos[(m-n)x]+cos [(m+n)x])$ Using this identity, we get $\int cos 5\theta cos 3\theta d\theta=\int\frac{1}{2}(cos 2\theta+ cos8\theta)d\theta$ $=\frac{1}{2}\int cos 2\theta d\theta +\frac{1}{2}\int cos 8\theta d\theta$ $=\frac{1}{2}\times\frac{sin2\theta}{2}+\frac{1}{2}\times\frac{sin8\theta}{8}+C$ $= \frac{sin 2\theta}{4}+\frac{sin 8\theta}{16}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.