Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 36

Answer

$$y = \frac{2}{7}{\tan ^{7/2}}x + \frac{2}{3}{\tan ^{3/2}}x + C$$

Work Step by Step

$$\eqalign{ & y' = \sqrt {\tan x} {\sec ^4}x \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \sqrt {\tan x} {\sec ^4}x \cr & {\text{Separate the variables}} \cr & dy = \sqrt {\tan x} {\sec ^4}xdx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {\sqrt {\tan x} {{\sec }^4}x} dx \cr & y = \int {\sqrt {\tan x} {{\sec }^2}x{{\sec }^2}x} dx \cr & y = \int {\sqrt {\tan x} \left( {{{\tan }^2}x + 1} \right){{\sec }^2}x} dx \cr & y = \int {\left( {{{\tan }^{5/2}}x + {{\tan }^{1/2}}x} \right){{\sec }^2}x} dx \cr & y = \frac{{{{\tan }^{7/2}}x}}{{7/2}} + \frac{{{{\tan }^{3/2}}x}}{{3/2}} + C \cr & y = \frac{2}{7}{\tan ^{7/2}}x + \frac{2}{3}{\tan ^{3/2}}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.