Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 530: 48

Answer

$$\int \tan ^{5} \frac{x}{4} \sec ^{4} \frac{x}{4} d x = \frac{2}{3}\tan ^{6}(x/4)+\frac{1}{2}\tan ^{8}(x/4) +c$$

Work Step by Step

$$ \int \tan ^{5} \frac{x}{4} \sec ^{4} \frac{x}{4} d x $$ Let $ u= \frac{x}{4}\ \ \to \ \ du=\frac{1}{4}du$ \begin{align*} \int \tan ^{5} \frac{x}{4} \sec ^{4} \frac{x}{4} d x&=\frac{1}{4}\int \tan ^{5}u \sec ^{4} u du\\ &=4\int \tan ^{5}u (1+\tan^2u)\sec ^{2} u du\\ &=4\int[\tan ^{5}u\sec ^{2} u +\tan^7u\sec ^{2} u] du\\ &=4\left( \frac{1}{6}\tan ^{6}u+\frac{1}{8}\tan ^{8}u \right)+c\\ &= \frac{2}{3}\tan ^{6}(x/4)+\frac{1}{2}\tan ^{8}(x/4) +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.