Answer
$\frac{1}{2\pi} \tan^4\frac{\pi x}{2} +C$
Work Step by Step
Find the indefinite integral
$\int tan^3\frac{\pi x}{2}sec^2\frac{\pi x}{2}dx$
Let $u=tan\frac{\pi x}{2}$, $du=\frac{\pi}{2}sec^2\frac{\pi x}{2}dx$
$\frac{2}{\pi}\int u^3du$, Integrate
$\frac{1}{2 \pi}u^4 +C$, Resubstitute
$\frac{1}{2\pi} tan^4\frac{\pi x}{2} +C$