Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 9

Answer

\begin{aligned} \int x^{2} e^{-x} d x =-(x^2 +2x +2)e^{x}+C \end{aligned}

Work Step by Step

Given $$\int( x^{2} e^{-x}) d x $$ So, we have \begin{array}{|c c c|}\hline Differentiation && {Integration} \\ \hline x^2 & + & e^{-x} \\ &\searrow&\\ \hline 2x &- & -e^{-x} \\ &\searrow&\\ \hline 2 & + & e^{-x} \\ &\searrow&\\ \hline 0 & &-e^{-x} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int x^{2} e^{-x} d x\\ &= -x^2e^{-x}-2xe^{-x}-2e^{x}+C\\ &=-(x^2 +2x +2)e^{x}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.