Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 39

Answer

$$\frac{1}{5}{\left( {{x^2} + 1} \right)^{5/2}} - \frac{1}{3}{\left( {{x^2} + 1} \right)^{3/2}} + C $$

Work Step by Step

$$\eqalign{ & \int {{x^3}\sqrt {{x^2} + 1} } dx \cr & = \int {{x^2}\sqrt {{x^2} + 1} } xdx \cr & {\text{Integrate by the substitution mehtod}} \cr & \,\,\,\,\,{\text{Let }}u = {x^2} + 1,\,\,\,\,{x^2} = u - 1,\,\,\,\,\,du = 2xdx, \cr & \int {{x^2}\sqrt {{x^2} + 1} } xdx = \int {\left( {u - 1} \right)\sqrt u } \left( {\frac{1}{2}du} \right) \cr & = \frac{1}{2}\int {\left( {u - 1} \right){u^{1/2}}} du \cr & = \frac{1}{2}\int {\left( {{u^{3/2}} - {u^{1/2}}} \right)} du \cr & \cr & {\text{Then}}{\text{,}} \cr & = \frac{1}{2}\left( {\frac{{{u^{5/2}}}}{{5/2}} - \frac{{{u^{3/2}}}}{{3/2}}} \right) + C \cr & = \frac{1}{2}\left( {\frac{2}{5}{u^{5/2}} - \frac{2}{3}{u^{3/2}}} \right) + C \cr & = \frac{1}{5}{u^{5/2}} - \frac{1}{3}{u^{3/2}} + C \cr & {\text{write in terms of }}x{\text{; substitute }}{x^2} + 1{\text{ for }}u \cr & = \frac{1}{5}{\left( {{x^2} + 1} \right)^{5/2}} - \frac{1}{3}{\left( {{x^2} + 1} \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.