Answer
$$\int \tan ^{-1} y \ dy=y\tan ^{-1} y - \frac{1}{2} \ln |1+y^{2}|+C $$
Work Step by Step
Given $$\int \tan ^{-1} y \ dy $$ Now, using integration by parts: $$ u=\tan ^{-1} y \Rightarrow du= \frac{1}{1+y^2}dy $$ $$ dv= dy \Rightarrow v= y $$ So, we get \begin{aligned} I&=\int \tan ^{-1} y \ dy\\
&=uv- \int vdu\\
&=y\tan ^{-1}y - \int \frac{y }{1+y^{2}} d x\\
&=y\tan ^{-1} y - \frac{1}{2}\int \frac{2y }{1+y^{2}} d x\\
&=y\tan ^{-1} y - \frac{1}{2} \ln |1+y^{2}|+C \end{aligned}