Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 11

Answer

$$\int \tan ^{-1} y \ dy=y\tan ^{-1} y - \frac{1}{2} \ln |1+y^{2}|+C $$

Work Step by Step

Given $$\int \tan ^{-1} y \ dy $$ Now, using integration by parts: $$ u=\tan ^{-1} y \Rightarrow du= \frac{1}{1+y^2}dy $$ $$ dv= dy \Rightarrow v= y $$ So, we get \begin{aligned} I&=\int \tan ^{-1} y \ dy\\ &=uv- \int vdu\\ &=y\tan ^{-1}y - \int \frac{y }{1+y^{2}} d x\\ &=y\tan ^{-1} y - \frac{1}{2}\int \frac{2y }{1+y^{2}} d x\\ &=y\tan ^{-1} y - \frac{1}{2} \ln |1+y^{2}|+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.