Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 18

Answer

\begin{aligned} \int( r^2+r+1) e^{r} d x= e^{r}(r^2-r+2)+C \end{aligned}

Work Step by Step

Given $$\int( r^{2}+r+1) e^{r}d r $$ So, we have \begin{array}{|c c c c|}\hline & Differentiation && {Integration} \\ \hline + \quad \rightarrow&r^2+r+1 & & e^{r} \\ &&\searrow&\\ \hline - \quad \rightarrow& 2r+1 & &e^{r} \\ &&\searrow&\\ \hline + \quad \rightarrow&2& &e^{r} \\ &&\searrow&\\ \hline &0 & &e^{r} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int( r^2+r+1) e^{r} d x\\ &=( r^2+r+1)e^{r}-( 2r +1)e^{r}+2e^{r}\\ &= e^{r}(r^2-r+2)+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.