Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 28

Answer

$$ x\ln \left( {x + {x^2}} \right) - 2x + \ln \left| {x + 1} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\ln \left( {x + {x^2}} \right)} dx \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = \ln \left( {x + {x^2}} \right),\,\,\,\,du = \frac{{1 + 2x}}{{x + {x^2}}}dx,\,\,\,\,dv = dx,\,\,\,\,v = x \cr & \cr & {\text{Integration by parts then gives}} \cr & = x\ln \left( {x + {x^2}} \right) - \int {x\left( {\frac{{1 + 2x}}{{x + {x^2}}}} \right)dx} \cr & = x\ln \left( {x + {x^2}} \right) - \int {\frac{{1 + 2x}}{{1 + x}}dx} \cr & {\text{by long division: }}\frac{{1 + 2x}}{{1 + x}} = 2 - \frac{1}{{x + 1}} \cr & = x\ln \left( {x + {x^2}} \right) - \int {\left( {2 - \frac{1}{{x + 1}}} \right)dx} \cr & {\text{then}}{\text{,}} \cr & = x\ln \left( {x + {x^2}} \right) - 2x + \ln \left| {x + 1} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.