Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 20

Answer

\begin{aligned} \int t^2 e^{4t} d x =( \frac{1}{4}t^2 - \frac{1}{8}t + \frac{1}{32} )e^{4t}+C \\ \end{aligned}

Work Step by Step

Given $$\int t^{2} e^{4t}d x $$ So, we have \begin{array}{|c c c c|}\hline & Differentiation && {Integration} \\ \hline + \quad \rightarrow&t^{2} & & e^{4t} \\ &&\searrow&\\ \hline - \quad \rightarrow& 2t & &\frac{1}{4}e^{4t} \\ &&\searrow&\\ \hline + \quad \rightarrow&2& &\frac{1}{16}e^{4t} \\ &&\searrow&\\ \hline &0 & &\frac{1}{64}e^{4t} \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int t^2 e^{4t} d x\\ &= \frac{1}{4}t^2e^{4t} - \frac{1}{8}te^{4t} + \frac{1}{32} e^{4t}+C \\ &=( \frac{1}{4}t^2 - \frac{1}{8}t + \frac{1}{32} )e^{4t}+C \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.