Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 42

Answer

$$ - \frac{1}{{12}}\cos 6x + \frac{1}{4}\cos 2x + C$$

Work Step by Step

$$\eqalign{ & \int {\sin 2x} \cos 4xdx \cr & {\text{using the special product }}\sin Ax\cos Bx = \frac{1}{2}\left[ {\sin \left( {A + B} \right)x + \sin \left( {A - B} \right)x} \right] \cr & \int {\sin 2x} \cos 4xdx = \int {\frac{1}{2}\left[ {\sin \left( {2 + 4} \right)x + \sin \left( {2 - 4} \right)x} \right]} dx \cr & = \frac{1}{2}\int {\left( {\sin 6x - \sin 2x} \right)} dx \cr & = \frac{1}{2}\int {\sin 6x} dx - \frac{1}{2}\int {\sin 2x} dx \cr & \cr & {\text{integrate by the formula }}\int {\sin ax} dx = - \frac{1}{a}\cos ax + C \cr & = \frac{1}{2}\left( { - \frac{1}{6}\cos 6x} \right) - \frac{1}{2}\left( { - \frac{1}{2}\cos 2x} \right) + C \cr & \cr & {\text{simplifying, we get}} \cr & = - \frac{1}{{12}}\cos 6x + \frac{1}{4}\cos 2x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.