Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 15

Answer

\begin{aligned} \int x^{3} e^{x} d x =(x^3 -3x^2 +6x -6)e^{x}+C \end{aligned}

Work Step by Step

Given $$\int x^{3} e^{x} d x $$ So, we have \begin{array}{|c c c|}\hline Differentiation && {Integration} \\ \hline x^3 & + & e^x \\ &\searrow&\\ \hline 3x^2 & - & e^x \\ &\searrow&\\ \hline 6x &+ & e^x \\ &\searrow&\\ \hline 6 & - & e^x \\ &\searrow&\\ \hline 0 & & e^x \\ &&\\ \hline \end{array} Therefore \begin{aligned} I&=\int x^{3} e^{x} d x\\ &=x^3e^{x}-3x^2e^{x}+6xe^{x}-6e^{x}+C\\ &=(x^3 -3x^2 +6x -6)e^{x}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.