Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 6

Answer

$$\int_{1}^{e} x^3 \ln x d x =\frac{3e^{4}+1 }{16} $$

Work Step by Step

Given $$\int_{1}^{e} x^3 \ln x d x $$ Now, using integration by parts: $$ u=\ln x \Rightarrow du= \frac{1}{x}dx $$ $$ dv=x^3 dx \Rightarrow v= \frac{x^4}{4} $$ So, we get \begin{aligned} I&=\int_{1}^{e} x^4 \ln x d x\\ &=uv|_{1}^{e}- \int_{1}^{e}vdu\\ &=\frac{x^{4} \ln x}{4}|_{1}^{e}-\frac{1}{4} \int_{1}^{e} \frac{x^{4}}{x} d x\\ &=\frac{e^{4} \ln e}{4}-\frac{1^{2} \ln1}{4}-\frac{1}{4} \int_{1}^{e}x^3d x\\ &=\frac{e^{4} \ }{4}-\frac{x^4}{16} |_{1}^{e} \\ &=\frac{e^{4} }{4}-\frac{e^4}{16}+ \frac{1}{16} \\ \\ &=\frac{4e^{4} }{16}-\frac{e^4}{16}+ \frac{1}{16} \\ \\ &=\frac{3e^{4}+1 }{16} \\ \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.