Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 455: 21

Answer

$$\frac{1}{2}\left( { - {e^\theta }\cos \theta + {e^\theta }\sin \theta } \right) + C $$

Work Step by Step

$$\eqalign{ & \int {{e^\theta }\sin \theta } d\theta \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}u = {e^\theta },\,\,\,\,du = {e^\theta }d\theta,\,\,\,\,\,dv = \sin \theta d\theta,\,\,\,\,v = - \cos \theta \cr & \cr & {\text{Integration by parts then gives}} \cr & \int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta - \int {\left( { - \cos \theta } \right){e^\theta }d\theta } \cr & \int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta + \int {{e^\theta }\cos \theta } d\theta \cr & \cr & {\text{Integration by parts again}} \cr & \,\,\,\,\,{\text{Let }}u = {e^\theta },\,\,\,\,du = {e^\theta }d\theta,\,\,\,\,\,dv = \cos \theta d\theta,\,\,\,\,v = \sin \theta \cr & \int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta + \left( {{e^\theta }\sin \theta - \int {{e^\theta }\sin \theta } d\theta } \right) \cr & \int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta + {e^\theta }\sin \theta - \int {{e^\theta }\sin \theta } d\theta \cr & \cr & {\text{The unknown integral now appears on both sides of the equation}}{\text{. }} \cr & {\text{Adding the integral to both sides and adding the constant }}C{\text{ we obtain}} \cr & \int {{e^\theta }\sin \theta } d\theta + \int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta + {e^\theta }\sin \theta + C \cr & 2\int {{e^\theta }\sin \theta } d\theta = - {e^\theta }\cos \theta + {e^\theta }\sin \theta + C \cr & {\text{Divide both sides by 2}} \cr & \int {{e^\theta }\sin \theta } d\theta = - \frac{1}{2}{e^\theta }\cos \theta + \frac{1}{2}{e^\theta }\sin \theta + C \cr & \int {{e^\theta }\sin \theta } d\theta = \frac{1}{2}\left( { - {e^\theta }\cos \theta + {e^\theta }\sin \theta } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.